

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ИРКУТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФГБОУ ВПО «ИГУ»

Кафедра общей и космической физики

УТВЕРЖДАЮ acreall

Рабочая программа дисциплины (модуля)

Код дисциплины ____ Б3.В.ДВ.9.2

Наименование дисциплины (модуля)	Методы об	работки сигналов и изо	<u>бражений</u>
Рекомендуется для направления (ий) по 011200.62 — физика, профиль «Солне			
Степень (квалификация) выпускника <u>б</u>	акалавр		
Согласовано с УМК факультета Протокол № 3 Гот « // » / 2 20/3г. Председатель ////////////////////////////////////	(института)	Рекомендовано кафедрой: общей и космической физики Протокол № 3 От «Ду» 4	20 <u>/</u> 2.
		Зав.кафедрой профессор д.фм.	н. В.Л. Паперный

Иркутск 2013 г.

Содержание

1. Цели и задачи дисциплины (модуля)	3
2. Место дисциплины (модуля) в структуре ООП	3
3. Требования к результатам освоения дисциплины (модуля)	3
4. Объем дисциплины (модуля) и виды учебной работы	4
5. Содержание дисциплины (модуля)	5
5.1. Содержание разделов и тем дисциплины (модуля)	5
5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (после	дующими)
дисциплинами	6
5.3. Разделы и темы дисциплин (модулей) и виды занятий	6
6. Перечень семинарских, практических занятий и лабораторных работ	7
7. Примерная тематика курсовых работ (проектов) (при наличии)	8
8. Учебно-методическое и информационное обеспечение дисциплины (модуля)	8
а) основная литература	8
б) дополнительная литература	8
в) программное обеспечение	9
г) базы данных, информационно-справочные и поисковые системы	9
9. Материально-техническое обеспечение дисциплины (модуля)	9
10. Образовательные технологии	9
11. Оценочные средства (ОС)	10

1. Цели и задачи дисциплины (модуля)

Учебный курс направлен на изучение теоретических основ современных методов и важнейших алгоритмов, применяемых при компьютерной обработке результатов физического эксперимента, которые могут быть представлены в различных формах: электрические сигналы, акустические сигналы, статические и динамические изображения и др. В программе курса предусмотрена работа с натурными наблюдательными данными астрофизических обсерваторий ИСЗФ СО РАН.

Цели: изучение способов передачи информации и методов преобразования сигналов, освоение теоретических основ и математического аппарата цифровой обработки одно- и многомерных сигналов, изучение методов и алгоритмов цифровой обработки сигналов, освоение современных программных инструментов.

Ставится задача сформировать навыки экспериментальных исследований, построения цифровых модулей изучаемых процессов.

2. Место дисциплины (модуля) в структуре ООП

Курс обработки сигналов и изображений относится к <u>вариативной части</u> математического и естественнонаучного цикла.

Данная дисциплина предназначена для студентов 4 курса физического факультета и является продолжением информатики, которую студенты усваивают на младших курсах и таким образом обеспечивает непрерывность компьютерного образования.

3. Требования к результатам освоения дисциплины (модуля):

В Федеральном компоненте ГОС подготовки бакалавра по направлению 011200.62 «физика», (профиль «Солнечно-земная физика») не указаны явно требования к результатам освоения дисциплины «Методы обработки сигналов и изображений».

Выпускник должен обладать следующими общекультурными компетенциями (ОК):

- способностью использовать в познавательной и профессиональной деятельности базовые знания в области математики и естественных наук (ОК-1);
- способностью выстраивать и реализовывать перспективные линии интеллектуального, культурного, нравственного, физического и профессионального саморазвития и самосовершенствования (ОК-5);
- способностью овладеть основными методами , способами и средствами получения, хранения и переработки информации, иметь навыки работы с компьютером как средством управления информацией (ОК-12);
- способность использовать в познавательной и профессиональной деятельности навыки работы с информацией из различных источников (ОК-16);

- способностью понимать сущность и значение информации в развитии современного информационного общества, сознавать опасности и угрозы, возникающие в этом процессе, соблюдать основные требования информационной безопасности, в том числе защиты государственной тайны (ОК-21).

Выпускник должен обладать следующими профессиональными компетенциями (ОК):

- способностью использовать базовые теоретические знания для решения профессиональных задач (ПК-1);
- способностью применять на практике базовые профессиональные навыки (ПК-2);
- способностью использовать специализированные знания в области физики для освоения профильных физических дисциплин (ПК-4).

В результате изучения курса " Методы обработки сигналов и изображений " студент должны знать теоретические основы и математический аппарат цифровой обработки одномерных сигналов и изображений, методы преобразования сигналов телекоммуникационных систем – кодирование, сжатие, модуляцию, форматы представления графической информации.

иметь представление о современных компьютерных технологиях обработки сигналов и изображений;

уметь моделировать структуры систем цифровой обработки сигналов, реализовывать на типовых и специализированных программных средствах методы и алгоритмы цифровой обработки, а также оптимизировать процедуру цифровой обработки сигналов при различных априорных сведениях;

владеть навыками обработки сигналов, базовыми алгоритмами построения 2D и 3D-изображений.

4. Объем дисциплины (модуля) и виды учебной работы

Вид учебной работы	Всего		Семе	стры	
-	часов /	8			
	зачетных				
	единиц				
Аудиторные занятия (всего)	42	42			
В том числе:	-	-	-	-	-
Лекции	18	18			
Практические занятия (ПЗ)	18	18			
Семинары (С)					
Лабораторные работы (ЛР)					
КСР	6	6			
Самостоятельная работа (всего)	30	30			
В том числе:			-	-	-
Курсовой проект (работа)				_	_
Расчетно-графические работы					

Реферат (при наличии)				
Другие виды самостоятельной работы				
Вид промежуточной аттестации (зачет, экзамен)				
Общая трудоемкость часы	72	72		
зачетные единицы	2	2		
	2	2		

5. Содержание дисциплины (модуля)

5.1. Содержание разделов и тем дисциплины (модуля)

Раздел 1. ОСНОВЫ АНАЛИЗА СИГНАЛОВ

1.1. Вводный курс. Основные определения

Классификация сигналов. Энергия и мощность сигнала. Основные статистические характеристики сигнала. Ряд Фурье. Преобразование Фурье. Корреляционная функция. Теорема Парсеваля. Дискретные представления сигналов. Интегральные представления.

1.2. Дискретные сигналы

Аналого-цифровое и цифро-аналоговое преобразование. Теорема Котельникова. Частота Найквиста. Спектр дискретного сигнала. Субдискретизация сигнала. Z-преобразование. Дискретные случайные сигналы. Корреляционная матрица. Дискретный белый шум.

1.3. Спектральный анализ

Дискретное преобразование Фурье (ДПФ). Свойства ДПФ. Восстановление непрерывного сигнала с помощью ДПФ. Связь ДПФ и спектра преобразования Фурье. Алгоритм быстрого ДПФ (БПФ). БПФ с прореживанием по времени, с прореживанием по частоте. Взаимосвязь ДПФ и фильтрации. Эффект Гиббса. Весовые оконные функции. Периодограмма. Метод Уэлча. Спектр дискретного случайного процесса. Текущие спектры и их свойства (по материалам работ И.И. Орлова).

1.4. Фильтры

Линейная цифровая обработка сигналов с помощью фильтров. Импульсная характеристика фильтра. Функция передачи. Фильтры первого и второго порядка. Формы реализации цифровых фильтров. Понятие свертки. Обращение свертки. Некоторые идеализированные фильтры.

1.5. Модуляция и демодуляция

Амплитудная модуляция. Разновидности амплитудной модуляции. Фазовая и частотная модуляция. Демодуляция. Способы модуляции, используемые при передаче информации.

1.6. Адаптивные фильтры

Основные понятия адаптивной обработки сигналов. Оптимальный фильтр Винера. Понятие целевой функции. Градиентный поиск оптимального решения и т.д. Применение адаптивных фильтров. Выравнивание частотной характеристики приемного канала.

Раздел 2. ОСНОВЫ ОБРАБОТКИ ИЗОБРАЖЕНИЙ

1.1. Основы кодирования и хранения изображений

Принципы кодирования изображений. Методы и форматы хранения изображений. Особенности форматов для хранения экспериментальных данных. Сжатие изображений. Кодирование цветных изображений. Теория цвета. Квантование цвета и стандарты цветового кодирования.

1.2. Основы работы с изображениями

Геометрические преобразования изображений. Масштабирование. Повороты. Бинаризация. Понятие гистограммы изображения. Линейное и нелинейное контрастирование. Особенности построения контуров изображения. Совмещение и наложение контуров и изображений. Модели изображений и их искажений.

1.3. Фильтрация шумов на изображениях

Общие понятия фильтрации изображений. Масочная фильтрация. Линейная фильтрация (применение линейных электронных фильтров к изображениям). Нелинейная фильтрация.

1.4. Реконструкция изображений

Постановка обратной задачи восстановления изображений. Восстановление изображений на основе обратной фильтрации. Фильтр Винера (обобщение фильтра на двумерный случай). Итерационные и алгебраические методы восстановления изображений.

5.2 Разделы дисциплины и междисциплинарные связи с обеспечиваемыми (последующими) дисциплинами

Дисциплина преподаётся на четвертом курсе обучения бакалавров, поэтому обеспечиваемых (последующих) дисциплин не имеется.

5.3. Разделы и темы дисциплин (модулей) и виды занятий

$N_{\underline{0}}$	Наименование	Наименование темы		-	Виды заня	тий в часа	X	
Π/Π	раздела		Лек.	Практ.	Семин	Лаб.	CPC	Всего
			JICK.	зан.	ССМИП	зан.	CIC	DCCIO
1.	Раздел 1	Вводный курс. Основные	1					1
	, ,	определения						
2.	Раздел 1	Основные алгоритмы обработки сигналов на компьютере.	2	2			4	8

		Дискретные						
		сигналы.						
3.	Раздел 1	Спектральный анализ фильтрация сигналов	И	2	2		3	7
4.	Раздел 1	Модуляция- демодуляция простейших сигналов		2	2		3	7
5.	Раздел 1	Реконструкция сигналов. Алгоритмы адаптивной фильтрации сигналов		2	2		4	8
6.	Раздел 2	Основы работы изображениями	С	1				1
7.	Раздел 2	Кодирование декодирование изображений	И	2	2		4	8
8.	Раздел 2	Методы препарирования изображений измерений изображениях	и на	2	4		4	10
9.	Раздел 2	Методы геометрических преобразований совмещения изображений	И	2	2		4	8
10.	Раздел 2	Фильтрация восстановление изображений	И	2	2		4	8

6. Перечень семинарских, практических занятий и лабораторных работ

№	№ раздела и	Наименование семинаров,	Труд	Оценочные	Форм
Π/Π	темы	практических и лабораторных	оемк	средства	ируем
	дисциплины	работ	ость		ые
	(модуля)		(часы		компе
)		тенци
					И
1	2	3	4	5	6
1.	Раздел 1	Основные алгоритмы обработки сигналов на компьютере. Дискретные сигналы.	2	Проект, дискуссия *	OK1 OK5
2.	Раздел 1	Спектральный анализ и фильтрация сигналов	2	Проект, дискуссия *	ПК1 ПК2
3.	Раздел 1	Модуляция-демодуляция простейших сигналов	2	Проект, дискуссия *	ПК4
4.	Раздел 1	Реконструкция сигналов. Алгоритмы адаптивной фильтрации сигналов	2	Проект, дискуссия *	ПК5 ПК8
5.	Раздел 2	Кодирование и декодирование изображений	2	Проект, дискуссия *	ПК10

6.	Раздел 2	Методы препарирования изображений и измерений на изображениях	4	Проект, дискуссия *	
7.	Раздел 2	Методы геометрических преобразований и совмещения изображений	2	Проект, дискуссия *	
8.	Раздел 2	Фильтрация и восстановление изображений	2	Проект, дискуссия *	

^{* -} студенты должны показать преподавателю законченную, правильно функционирующую программу.

7. Примерная тематика курсовых работ (проектов) (при наличии)

Предполагается выполнением курсовых и дипломных работ с использованием обеспечивающего дисциплину оборудования. Темы таких работ зависят от текущих задач научной деятельности кафедры.

8. Учебно-методическое и информационное обеспечение дисциплины (модуля):

- а) основная литература
- 1. Сергиенко, А.Б. Цифровая обработка сигналов. М.: БХВ-Петербург, 2011. 768 с. ISBN 978-5-9775-0606-9
- 2. Гонсалес, Р., Вудс Р. Цифровая обработка изображений / Р. Гонсалес, Р. Вудс, С. Эддинс М: Техносфера, 2006. 621 с. ISBN 5-94836-092-X
- 3. Марпл.-мл, С.Л. Цифровой спектральный анализ и его приложения. М.: Мир, 1990. 547 с. ISBN 5-03-001191-9
- б) дополнительная литература
 - 1) Грузман, И.С. Цифровая обработка изображений в информационных системах. Учебное пособие. / И. С. Грузман, В. С. Киричук, В. П. Косых, Г. И. Перетягин, А. А. пектор Новосибирск: Новосибирский государственный технический университет (НГТУ), 2002. 352 с. ISBN 5-7782-0330-6
 - 2) Методы компьютерной обработки изображений. / Под ред. В.А. Сойфера М.: Физматлит, 2003. 784 с. ISBN 5-9221-0270-2
 - 3) Н.М.Астафьева. Вейвлет-анализ: основы теории и примеры применения. //Успехи физических наук, 1996. Т.166. №11. сс. 1145-1170
 - 4) Интернет-страничка «Теория и практика вейвлет-преобразования»: http://www.autex.spb.ru/techsupt/wavelet/
 - 5) Дьяконов, В. МАТЛАБ. Обработка сигналов и изображений. Специальный справочник / В. Дьяконов, И. Абраменкова СПб.: Питер, 2002. 608 с. ISBN: 5-318-00667-1
 - 6) Балакришнан, А.В. Теория фильтрации Калмана. М.: Мир, 1988. 86 с
 - 7) Френкс, Л. Теория сигналов. М.: Советское радио, 1974. –346 с.

- Фукунага, К. Введение в статистическую теорию распознавания образов. М.: Наука, 1979. – 368 с.
- 9) Цифровая обработка изображений в информационных системах. Новосибирск, HГТУ, 2002 г.
- 10) Прэтт, У. Цифровая обработка изображений, в 2-х томах. М.: Мир, 1982. 790 с.
- 11) Хорн Б.К.П. Зрение роботов М.: Мир, 1989. 487 с. ISBN: 5-03-000570-6
- 12) Даджион, Д. Цифровая обработка многомерных сигналов / Д. Даджион, Р. Мерсеро. М.: Мир, 1988. 488 с.
- в) программное обеспечение
 - пакеты программирования (Borland Delphi, Borland C++, MATLAB), пакет OFFICE, стандартные средства Windows (Internet Explorer, MSPaint).
 - язык анализа и визуализации данных GDL и его пакеты расширения; среда графического программирования LabVIEW
- г) базы данных, информационно-справочные и поисковые системы
 - методические описания лабораторных работ.
 - лекции по цифровой обработке сигналов http://learndsp2012.tom.ru/
 - Введение в основы ЦОС http://www.dspguide.com/
 - Журнал "Цифровая обработка сигналов" http://www.dspa.ru/

9. Материально-техническое обеспечение дисциплины (модуля):

Практические занятия проводятся в специальном дисплейном классе с современной компьютерной техникой. Имеются методические описания лабораторных работ.

Учебная лаборатория оснащена новейшими лабораторными станциями NI ELVIS II с полной программной поддержкой (LabView, Ni-DaQmx, NI-VISA, NI Signal Express, NI Measurement Studio)

10. Образовательные технологии:

В программе определена четкая последовательность изучения учебного материала. Предусмотрено использование современных образовательных технологий: информационные (лекции и презентации в Power Point), проектные (мультимедиа, документальное видео).

Реализуются следующие формы учебной деятельности:

- лекции, нацеленные на получение необходимой информации, и ее использование при решении практических задач;
- практические занятия, направленные на активизацию познавательной деятельности студентов и приобретения ими навыков решения практических и

проблемных задач;

- консультации еженедельно для всех желающих студентов;
- самостоятельная внеаудиторная работа направлена на приобретение навыков самостоятельного решения задач по дисциплине;
- текущий контроль за деятельностью студентов осуществляется в основном практических занятиях при дискуссии о результатах лабораторных работ.

11. Оценочные средства (ОС):

11.1. Оценочные средства для входного контроля

Входной контроль не осуществляется.

11.2. Оценочные средства текущего контроля

Задания и вопросы для компьютерного практикума

Раздел 1

1. Основные алгоритмы обработки сигналов на компьютере. Дискретные сигналы.

Дано: Цифровая запись гидроакустического сигнала длительностью 1.03 с. Сигнал получен с помощью специализированного 4-х канального приемника на о. Байкал с глубины 150м. Шаг квантования сигнала – 5 мкс.

Необходимо написать программу, которая а) считывает сигнал из файла; б) вычисляет такие характеристики сигнала как: математическое ожидание, дисперсию; в) производит вычисление и построение в виде графиков функции корреляции между парами приемных каналов; г) выполняет операцию усреднения сигнала по трем точкам.

Контрольные вопросы к практикуму:

- а) Сигнал имеет частотный спектр, ограниченный частотой $F_{max} = 50$ к Γ ц. Каким должен быть выбран шаг квантования сигнала по времени (при его приеме), чтобы обеспечить условие отсутствия потерь информации?
- б) Сигнал регистрируется приемным устройством в течение 10 с., дискретные отсчеты сигнала снимаются через каждые 10 мкс. Какова предельная частота сигнала F_{max} может быть зафиксирована. Какое разрешение по частоте будет обеспечиваться в этом случае?

2. Спектральный анализ и фильтрация сигналов

Дано: Набор тестовых сигналов (синусоидальный сигнал, синус + белый шум и тд.) представленных в цифровой форме. Цифровая запись радиопотока Солнца на длине волны 5.2 см (шаг квантования 1.6 сек, период наблюдения 8 часов) в формате fits.

Необходимо написать программу, которая совершает следующие действия: а)

считывает сигналы из файлов; б) выполняет прямое БПФ над тестовыми сигналами и выводит результат в виде графиков (спектры мощности); в) фильтрует спектры в заданной полосе частот (тип фильтра по выбору пользователя) и производит обратное БПФ. Используя наработанный материал, выполнить анализ спектра реального радиосигнала. Выявить основные свойства спектра. В качестве дополнительного задания предлагается построить скользящий спектр мощности радиосигнала используя метод построения периодограмм Уэлча.

Контрольные вопросы к практикуму:

- а) Покажите, что преобразование Фурье и обратное преобразование суть линейные операции.
- б) Объяснить, в чем заключается смысл применения оконного преобразования Фурье и оконных весовых функций.
- в) Определите максимальный размер M окна сканирования, при котором предпочтителен прямой алгоритм вычисления свертки, если N = 2048, а исходные данные таковы $X=[x_0,x_1...x_{N-2},x_{N-1}]$ и ядро свертки $G=[g_0,g_1...g_{M-1}]$ комплексные.
- 3. Модуляция-демодуляция простейших сигналов

Необходимо смоделировать систему передачи информации по радиоканалу, которая состоит из передатчика сигнала, канала связи с аддитивным белым гауссовым шумом, приемника сигнала. Передатчик включает в себя источник сообщения и модулятор радиосигнала, а приемник - входной полосовой фильтр, демодулятор радиосигнала, ФНЧ.

Отобразить графики временных и спектральных функций на выходе каждого блока. Параметры системы передачи приведены ниже:

Источник сигнала - гармонический сигнал по закону синуса в третьей степени с частотой 130 Гц. Вид модуляции - фазовая модуляция с индексом модуляции 4. Несущая частота 3 кГц. Отношение сигнал/шум 9 дБ. Частота дискретизации 8 кГц.

4. Реконструкция сигналов. Алгоритмы адаптивной фильтрации сигналов Радиосигнал от наблюдаемого объекта удовлетворяет уравнению вида:

$$H(u)*F(u)=G(u)+N(u)$$

где H — передаточная функция радиотелескопа, F — истинный сигнал, G — наблюдаемый сигнал, N — стационарный гауссов шум; * - знак оператора свертки.

Необходимо написать программу, которая на основе применения оптимального фильтра Винера производит операцию обращения свертки и дает оценку истинного сигнала. Также, необходимо исследовать влияние шума на качество восстановленного

сигнала. Даны в виде массивов данных: а) наблюдаемый сигнал; б) истинный сигнал (для тестов алгоритма); в) передаточная функция радиотелескопа.

Раздел 2

- 5. Кодирование и декодирование изображений
 - Необходимо написать программу, которая совершает следующие действия:
 - а) находит и считывает файл в формате gif (bmp), выводит на экран по размеру изображения; б) сохраняет изображение в своем формате (придумать свой заголовок формата, который должен содержать размер массива с изображением, типы переменных, отсутствие, присутствие цветовой палитры. Создать программу, которая считывает изображение из файла вашего формата и выводит на экран.
- 6. Методы препарирования изображений и измерений на изображениях Необходимо написать программу, которая совершает следующие действия: а) Считывает изображение из файла и выводит на экран; б) Позволяет в интерактивном режиме отмечать две точки на изображении и получать скан отрезка, который соединяет эти две точки (значения всех элементов массива, которые попадают на отрезок). Отметить второй такой отрезок. Вывести полученные значения в виде графика на экран. Значения двух сканов должны быть нанесены на один график. В качестве маркера разных сканов можно выбрать или цвет, или разные типы линий или разные значки для пометки точек графиков. Сохранить созданный график в любом стандартном графическом формате.
- 7. Методы геометрических преобразований и совмещения изображений Дается два изображения Солнца (магнитограмма и изображение фотосферы). Необходимо написать программу, которая совершает следующие действия: а) считывает изображение фотосферы и магнитограмму из файла и выводит на экран; б) Из магнитограммы интерактивно вырезается область изображения, и она в виде контуров накладывается на изображение фотосферы; в) Результат выводится на экран. Считается, что оба изображения центрированы и размер диска Солнца в пикселях обоих изображений одинаковый.
- 8. Фильтрация и восстановление изображений

11.3. Оценочные средства для промежуточной аттестации

Для допуска к зачёту студент должен выполнить все практические задания.

Примерный список вопросов к зачёту:

- Классификация сигналов
- Основные статистические характеристики сигнала
- Ряд Фурье. Преобразование Фурье. Корреляционная функция

- Теорема Парсеваля
- Дискретные и интегральные представления сигналов.
- Аналого-цифровое и цифро-аналоговое преобразование. Теорема Котельникова. Частота Найквиста.
- Спектр дискретного сигнала. Субдискретизация сигнала.
- Дискретный белый шум.
- Дискретное преобразование Фурье (ДПФ).
- Восстановление непрерывного сигнала с помощью ДПФ.
- Алгоритм быстрого ДПФ (БПФ).
- Эффект Гиббса
- Метод Уэлча
- Спектр дискретного случайного процесса
- Линейная цифровая обработка сигналов с помощью фильтров
- Фильтры первого и второго порядка
- Понятие свертки. Обращение свертки.
- Амплитудная модуляция.
- Фазовая и частотная модуляция
- Демодуляция.
- Оптимальный фильтр Винера.
- Принципы кодирования изображений. Методы и форматы хранения изображений.
- Сжатие изображений
- Кодирование цветных изображений
- Геометрические преобразования изображений
- Модели изображений и их искажений.
- Фильтрации изображений.
- Нелинейная фильтрация.
- Обратная задача восстановления изображений
- Итерационные и алгебраические методы восстановления изображений.

P	· L · · · · · · · · · · · · · · · · · ·	
Разработчики:		
" Chouseng	доцент, к.фм.н.	Л.К. Кашапова
(подпись)	(занимаемая должность)	(инициалы, фамилия)
11 1 9		
Applend	ст.преп. к.фм.н.	А.А. Кочанов
(подпись)	(занимаемая должность)	(инициалы, фамилия)
Программа рассмотрен « <u>45</u> » <u>11</u> 201 <u>3</u> г.	ла на заседании <u>кафедры общей и г</u>	космической физики ИГУ
Протокол № _3_ Зав.	кафедрой До	В.Л. Паперный